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Abstract. After showing that the magnetic translation operators are not the symmetries of the
quantum Hall effect (QHE) on non-flat surfaces, we show that another set of operators which
leads to the quantum group symmetries for some of these surfaces exists. As a first example we
show that thesu(2) symmetry of theQHE on a sphere leads tosuq(2) algebra in the equator. We
explain this result by a contraction ofsu(2). Second, with the help of the symmetry operators
of QHE on the Poincaŕe upper half plane, we will show that the ground-state wavefunctions form
a representation of thesuq(2) algebra.

1. Introduction

After the discovery of the quantum Hall effect (QHE) [1] and the fractional quantum Hall
effect (FQHE) [2], Laughlin [3] introduced his interacting electron model and showed that
the incompressible quantum fluid can explain the appearance of the plateaux in theFQHE

for the filling factorν = 1/m, wherem is an odd integer. In recent years there have been
many attempts to explain this feature of incompressibility by the symmetries of the quantum
mechanics of the two-dimensional planar motion of a non-relativistic particle in a uniform
magnetic field. Recently Kogan [4] and Sato [5], by using the magnetic translation operator,
showed that there exists a quantum group symmetry in this problem. They found that the
following combination of the magnetic translation operator,Ta = exp(a · (∇+ iA)), where
a is a constant vector andA is the electromagnetic potential, could represent thesuq(2)
algebra:

J± = 1

q − q−1
(α±T±a + β±T±b) q2J3 = Tb−a (1)

whereq = exp( 1
2iB · (a × b)) and α+β− = β+α− = −1. We recall in passing that the

suq(2) algebra is theq-deformation of the universal enveloping algebra of the Lie algebra
su(2), given by

[J3, J±] = ±J± [J+, J−] = q2J3 − q−2J3

q − q−1
. (2)

Let Wn,n̄ = Ta where ai = εijnj , then it can be shown thatWn,n̄ satisfies the Fairlie–
Fletcher–Zachos (FFZ) trigonometric algebra [6]. This algebra in the weak field limit
(B → 0) leads to thew∞ algebra, the algebra of the area-preserving diffeomorphism [7].
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The simultaneous presence of the area-preserving diffeomorphism (thesuq(2) symmetry)
and incompressibility suggest that there may be a connection between them†. The same
symmetry was also found for the topological torus [8].

In this paper we will study the same quantum group symmetry for non-flat surfaces. In
section 2 we will show that the magnetic translation operators are the symmetries of the
Hamiltonian only when the metric is flat. Therefore in the case of non-flat surfaces we
must first look for the symmetry operators and then try to find any quantum group stucture
of them. In section 3 we will begin with the first non-trivial surface, the sphere. The
problem of the motion of the electrons in the presence of a magnetic monopole and when
the electrons are restricted to move on a sphere was first considered by Haldane [9]. He
formulated the problem such that the symmetry algebra of the Hamiltonian is thesu(2)
algebra, with generators which are represented by a special combination of the rotation
and gauge transformation operators. We will consider the group elements of this algebra
with non-constant parameters, that is the set of maps fromS2 to SU(2). By studying its
multiplication law we will recover theFFZ algebra for a special region of the sphere. We
will try to explain this appearance ofsuq(2) from su(2) by a special contraction ofsu(2).

It is well known that the group of automorphisms of any genusg > 2 compact Riemann
surface is discrete. So to look for any quantum group symmetry we have to consider non-
compact surfaces. Here we consider the Poincaré upper half plane in section 3, and we will
show that thesuq(2) algebra is the symmetry of this surface.

When this paper was nearly finished, we became aware of a preprint [10] in which the
quantum group symmetry of a system of electrons on a sphere had been discussed.

2. Symmetry properties of the magnetic translation operator

Consider a particle on a Riemann surface interacting with a monopole field, that is the
integral of the field strength out of the surface differs from zero. The natural definition of
the constant magnetic field is [11]

Fµν = B
√
gεµν (3)

and the Hamiltonian of the electron is given by

H = 1

2m

1√
g
(∂µ − iAµ)

√
ggµν(∂ν − iAν) = 1

2m
∇2 + B

2m
(4)

where ∇µ = ∂µ − iAµ. In [11] this Hamiltonian was solved by choosing some special
metrics.

Now consider the magnetic translation operatorTξ = eξ
µDµ which acts on scalars. Here

ξ = ξµ∂µ is a vector field andDµ = ∂µ + iAµ. It can be shown that the operatorsTξ is a
symmetry operator only when

[Dµ,∇ν ] = −∂µAν − ∂νAµ = 0. (5)

In other words we must be able to choose the symmetric gauge. But solving equations (4)
and (5) gives the following condition

∂µ(B
√
g) = 0. (6)

As B is a constant, this equation shows that the symmetric gauge is possible only when the
surface is flat. ThereforeTξ does not commute with the Hamiltonian when the surface is
not flat.

† We would like to thank one of the referees for his comment on this point. The incompressibility feature of the
FQHE is a collective behaviour of the electrons results from the interacting Hamiltonian. Therefore the invariance of
the single-particle problem under the area-preserving diffeomorphisms by itself does not imply incompressibility.
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3. Electron on a sphere

Consider an electron which is restricted to move on a sphere with radiusR, in the presence
of a magnetic monopole at the centre of the sphere. The flux of the magnetic fieldB is
quantized by the Dirac quantization conditionB = h̄S/eR2, whereS is half integer. The
single-particle Hamiltonian is [9]

H = Λ2

2mR2
(7)

whereΛ = r × [−ih∇ + eA], A satisfies∇ × A = BΩ (Ω = R/R) andΛ · Ω = 0. By
using gauge freedom, the electromagnetic potential can be taken as

A = − h̄S
eR

cotθϕ̂. (8)

The eigenvalues ofΛ2 are(`(`+1)−S2)h̄2 and the first Landau level is obtained for` = s

and is equal to ¯hwc/2 (wc = eB/m). It can be shown that the3i ’s satisfy the following
relations:

[3i,3j ] = ih̄εijk(3k − h̄S�k) (9)

andL = Λ + h̄sΩ generates thesu(2) algebra

[Li, Lj ] = ih̄εijkLk. (10)

The operatorsLi are the generators of the symmetries of the Hamiltonian: [H,Li ] = 0.
Now consider the group elements of this algebra

Rξ = exp

(
i

h̄
L · ξ

R

)
and Rη = exp

(
i

h̄
L · η

R

)
(11)

whereξ = ξ θ̂ andη = ηϕ̂. The product of these operators is

RξRη = exp

{
i

h̄R
(ξ + η) · Λ − 1

2R2h̄2 [ξ · Λ,η · Λ] + i

3h̄R
[ξ · Λ,M] + · · ·

}
(12)

whereM denotes the second term of the exponent. A simple calculation shows that

[ξ · Λ,η · Λ] = −ih̄ξη(h̄S + cotθ3θ) (13)

where

3θ = h̄

(
S cotθ + i

sinθ

∂

∂ϕ

)
.

Now the equalityξ · Λ = ξ3θ implies that [ξ · Λ,M] = 0. Therefore

RξRη = exp

{
i

h̄R
(ξ + η) · Λ + iξη

2R2 sin2 θ

(
S + cosθ

∂

∂ϕ

)}
. (14)

If we restrict ourselves to the regionθ = π
2 , we find that

RξRη = exp

(
ieBξη

2h̄

)
Rξ+η. (15)

Comparing this equation with the relation satisfied by the magnetic translation operatorTξ

[4]; i.e.

TξTη = exp

(
ie

2h̄
B · (ξ × η)

)
Tξ+η (16)
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we see that the algebra of the operator valued mapRξ : S2 → SU(2), when restricted to
the circleθ = π/2, is isomorphic to the magnetic translation algebra. Therefore by using
the same construction as in equation (1), one can also derive thesuq(2) algebra out of the
operatorRξ with

q = exp

(
ie

2h̄
B · (ξ × η)

)
.

This result may be made plausible if we note that the magnetic translation operatorTξ can
also be expressed as [4]

Tξ = Wn,n̄ = exp( 1
2(nb

† − n̄b)) (17)

where b = 2pz̄ − 1
2iBz and b† = 2pz + 1

2iBz̄ and they satisfy the Heisenberg algebra:
[b, b†] = 2B. On the other hand thesu(2) algebra which is used in the construction ofRξ

operators can be contracted to the Heisenberg algebra plus a rotation as follows. LetH,X±

be the generators ofsu(2):

[H,X±] = ±2X± [X+, X−] = H. (18)

Define new generatorsH ′ andP± as inH = H ′ + 1/ε2 andP± = εX±, then

[H ′, P±] = ±2P± [P+, P−] = ε2H ′ + 1. (19)

At the limit ε → 0 we have

[H ′, P±] = ±2P± [P+, P−] = 1. (20)

Therefore it is reasonable to expect that the algebra of the magnetic translation operator
Tξ which is the exponential of only the Heisenberg algebra , is obtained from the complicated
algebra (12), when we restrict ourselves to theθ = π/2 circle.

4. Electron on the Poincaŕe upper half plane

In this section we consider the Poincaré upper half planeH = {z = x + iy, y > 0}, with
the following metric

ds2 = dx2 + dy2

y2
. (21)

For a covariantly constant magnetic fieldB, a particular gauge choice leads to

Az = Az̄ = B

2y
. (22)

In this gauge the Hamiltonian (4) reduces to (for simplicity we takem = 2)

H = −y2∂∂̄ + iB

2
y(∂ + ∂̄)+ B2

4
(23)

and the ground states with energyB/4 are given by the solutions of the equation

∇̄ψ0 =
(
∂̄ + B

2iy

)
ψ0 = 0 (24)

which areψ0(z, z̄) = yBψ0(z).
It can be easily checked that there are two operators which commute with the

Hamiltonian (23):

L1 = ∂ + ∂̄ = ∂x L2 = z∂ + z̄∂̄ = x∂x + y∂y. (25)
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L1 andL2 are the generators of a subalgebra ofsl(2, R). Now let b = L1 andb† = L−1
1 L2

where [b, b†] = 1. Then we can choose the ground-state wavefunctions to be the
eigenfunctions ofb†. By a direct calculation it can be shown that

b†ψ0(λ|z, z̄) = λψ0(λ|z, z̄) (26)

where

ψ0(λ|z, z̄) = yB(λ− z)−B. (27)

Then if we consider the symmetry operatorTξ = exp(ξ1b + ξ2b
†) we obtain

Tξψ0(λ|z, z̄) = exp(ξ2λ− 1
2ξ1ξ2)ψ0(λ− ξ1|z, z̄). (28)

Now it can be verified that the generators ofsuq(2) are

J+ = Tξ − Tη

q − q−1
J− = T−ξ − T−η

q − q−1

q2J0 = Tξ−η whereq = exp( 1
2ξ × η) (29)

and the ground-state wavefunctions are a representation of this algebra

J+ψ0(λ|z, z̄) = [1/2 − λ/ξ1]qψ0(λ− ξ1|z, z̄)
J−ψ0(λ|z, z̄) = [1/2 + λ/ξ1]qψ0(λ+ ξ1|z, z̄)
q±J0ψ0(λ|z, z̄) = q∓λ/ξ1ψ0(λ|z, z̄) (30)

where the quantum symbol [x]q is defined by

[x]q = qx − q−x

q − q−1
. (31)

In this way we have shown the quantum group symmetry ofQHE on the Poincaŕe upper
half plane. Note that we only considered single-particle wavefunctions. The case of an
interacting system with Laughlin wavefunctions will be studied elsewhere.
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