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Abstract. After showing that the magnetic translation operators are not the symmetries of the
quantum Hall effect¢HE) on non-flat surfaces, we show that another set of operators which
leads to the quantum group symmetries for some of these surfaces exists. As a first example we
show that thesu(2) symmetry of thegHe on a sphere leads ta, (2) algebra in the equator. We
explain this result by a contraction efi(2). Second, with the help of the symmetry operators

of QHE on the Poinca upper half plane, we will show that the ground-state wavefunctions form

a representation of the:, (2) algebra.

1. Introduction

After the discovery of the quantum Hall effeatHE) [1] and the fractional quantum Hall
effect EQHE) [2], Laughlin [3] introduced his interacting electron model and showed that
the incompressible quantum fluid can explain the appearance of the plateauxrgHbhe

for the filling factorv = 1/m, wherem is an odd integer. In recent years there have been
many attempts to explain this feature of incompressibility by the symmetries of the quantum
mechanics of the two-dimensional planar motion of a non-relativistic particle in a uniform
magnetic field. Recently Kogan [4] and Sato [5], by using the magnetic translation operator,
showed that there exists a quantum group symmetry in this problem. They found that the
following combination of the magnetic translation operay = expla - (V +iA)), where

a is a constant vector and is the electromagnetic potential, could representsthg2)
algebra:

1
Jr = q_l (0+Tvq + B+ T4sp) qzj3 =Tp—a (1)

q—
whereg = exp(%iB -(a x b)) anday B = Bra_ = —1. We recall in passing that the
suy(2) algebra is they-deformation of the universal enveloping algebra of the Lie algebra
su(2), given by

2J3 _ —2J3

e )
q9—49

Let W,; = T, wherea; = ¢;n;, then it can be shown thaV, ; satisfies the Fairlie—

Fletcher—ZachosF€z) trigonometric algebra [6]. This algebra in the weak field limit

(B — 0) leads to thew,, algebra, the algebra of the area-preserving diffeomorphism [7].

[Ja, Jou] = £Js [J4, ] =
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The simultaneous presence of the area-preserving diffeomorphismi{}® symmetry)
and incompressibility suggest that there may be a connection between. tidra same
symmetry was also found for the topological torus [8].

In this paper we will study the same quantum group symmetry for non-flat surfaces. In
section 2 we will show that the magnetic translation operators are the symmetries of the
Hamiltonian only when the metric is flat. Therefore in the case of non-flat surfaces we
must first look for the symmetry operators and then try to find any quantum group stucture
of them. In section 3 we will begin with the first non-trivial surface, the sphere. The
problem of the motion of the electrons in the presence of a magnetic monopole and when
the electrons are restricted to move on a sphere was first considered by Haldane [9]. He
formulated the problem such that the symmetry algebra of the Hamiltonian isuti2g
algebra, with generators which are represented by a special combination of the rotation
and gauge transformation operators. We will consider the group elements of this algebra
with non-constant parameters, that is the set of maps §érto SU(2). By studying its
multiplication law we will recover theFz algebra for a special region of the sphere. We
will try to explain this appearance o, (2) from su(2) by a special contraction ofu(2).

It is well known that the group of automorphisms of any gegius 2 compact Riemann
surface is discrete. So to look for any quantum group symmetry we have to consider non-
compact surfaces. Here we consider the Poicgper half plane in section 3, and we will
show that thesu, (2) algebra is the symmetry of this surface.

When this paper was nearly finished, we became aware of a preprint [10] in which the
guantum group symmetry of a system of electrons on a sphere had been discussed.

2. Symmetry properties of the magnetic translation operator

Consider a particle on a Riemann surface interacting with a monopole field, that is the
integral of the field strength out of the surface differs from zero. The natural definition of
the constant magnetic field is [11]

F., = BJ/g€u 3)
and the Hamiltonian of the electron is given by
1 1 B
= " (3, —iA W@, —iA) = — V24 — 4
om \/E( e — 1AL 88" ( 1A,) om + om (4)

whereV, = 9, —iA,. In [11] this Hamiltonian was solved by choosing some special
metrics.

Now consider the magnetic translation operafpe= €" 2+ which acts on scalars. Here
£ = ¢&"9, is a vector field and>, = 9, +iA4,. It can be shown that the operatdfsis a
symmetry operator only when

[D,.V,] = —9,A, — d,A, = 0. (5)

In other words we must be able to choose the symmetric gauge. But solving equations (4)
and (5) gives the following condition

3,(By/g) =0. (6)

As B is a constant, this equation shows that the symmetric gauge is possible only when the
surface is flat. Therefor&; does not commute with the Hamiltonian when the surface is
not flat.

1 We would like to thank one of the referees for his comment on this point. The incompressibility feature of the

FQHE s a collective behaviour of the electrons results from the interacting Hamiltonian. Therefore the invariance of
the single-particle problem under the area-preserving diffeomorphisms by itself does not imply incompressibility.
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3. Electron on a sphere

Consider an electron which is restricted to move on a sphere with r&jiirsthe presence
of a magnetic monopole at the centre of the sphere. The flux of the magnetidBfiisld
quantized by the Dirac quantization conditi®h= %S/eR?, wheresS is half integer. The
single-particle Hamiltonian is [9]
AZ

H= 5 R @)
whereA = r x [—ihV + e A], A satisfiesV x A = BQ (2 =R/R) andA - Q2 =0. By
using gauge freedom, the electromagnetic potential can be taken as

hS
A =—""cotdp. (8)
eR

The eigenvalues aA? are (¢(£ + 1) — $?)i? and the first Landau level is obtained foe s
and is equal tdrwe/2 (we = eB/m). It can be shown that thd;’s satisfy the following
relations:

[Ai, Aj] = ihe;ju (A — RSQ) 9
and L = A + hs§2 generates theu(2) algebra
[Ll', Lj] = iﬁeijkLk. (10)

The operatord.; are the generators of the symmetries of the Hamiltoni&h:[;] = 0.
Now consider the group elements of this algebra

i £ i n
R = :L ¢ — R = :L * — 11
¢ exp(h R> and n exp(h R) (11)
where¢ = €6 andn = ng. The product of these operators is
[ i
R R = — . A Il —— . A . A e . A M e 12
chy = expl e b m A= ole A Al gle A+l @2
where M denotes the second term of the exponent. A simple calculation shows that
[€-A,n-A] = —ihén(hS + cotb Ay) (13)

where
Ao =h [ Scotd + [
o sind ag )

Now the equalityé - A = £ Ay implies that E - A, M] = 0. Therefore

i i&n 0 )}
ReRy =expy— &+ -A+—"——-—(S+cosd— |;. 14
e p{hR(g ™ 2R25in29< 3¢ (14)
If we restrict ourselves to the regigh= 7, we find that
ieBEn
R¢R,) = exp( o ) Reyn. (15)

Comparing this equation with the relation satisfied by the magnetic translation opgrator
[4]; i.e.

ret = ep( B € x 0 ) T (16)
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we see that the algebra of the operator valued ®ap S? — SU(2), when restricted to

the circled = 7 /2, is isomorphic to the magnetic translation algebra. Therefore by using
the same construction as in equation (1), one can also derive:{li2) algebra out of the
operatorR, with

q= 9Xp<|22—B - (€ x n)) .

This result may be made plausible if we note that the magnetic translation opEratan
also be expressed as [4]

Te = Wi = exp(3(nb' — iib)) (17)

whereb = 2p; — %iBz and b’ = 2p, + %iBZ and they satisfy the Heisenberg algebra:
[b, b'] = 2B. On the other hand the:(2) algebra which is used in the construction Ry
operators can be contracted to the Heisenberg algebra plus a rotation as follows. X-et
be the generators ol (2):

[H, X*] = £2x* [X*t,X"]=H. (18)
Define new generatord’ and P* as inH = H' + 1/¢? and P* = eX*, then

[H', P¥] = +2P* [PT, Pl =€’H + 1. (19)
At the limit ¢ — 0 we have

[H', Pf] = +2P* [Pt,PT] =1 (20)

Therefore it is reasonable to expect that the algebra of the magnetic translation operator
T¢ which is the exponential of only the Heisenberg algebra , is obtained from the complicated
algebra (12), when we restrict ourselves to ¢he /2 circle.

4. Electron on the Poincagé upper half plane

In this section we consider the Poineanpper half planed = {z = x + iy, y > 0}, with
the following metric

dx? 4+ dy?
ds2 = ST 21)
y
For a covariantly constant magnetic fiekj a particular gauge choice leads to
B
A, =A; = . (22)
2y
In this gauge the Hamiltonian (4) reduces to (for simplicity we take- 2)
_ iB - B?
H= —yzaa+7y(a+a)+Z (23)
and the ground states with enery4 are given by the solutions of the equation
- - B
Vipo = <8+-> Yo=0 (24)
2iy

which arev(z, 2) = y2¥o(2).
It can be easily checked that there are two operators which commute with the
Hamiltonian (23):

Li=03+03=20, Ly =23 +7d = x3, + yd,. (25)
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L, and L, are the generators of a subalgebrai@®, R). Now leth = L, andb’ = Lfle

where p,b'] = 1. Then we can choose the ground-state wavefunctions to be the
eigenfunctions ob’. By a direct calculation it can be shown that
biyo(rlz, 2) = oAz, 2) (26)
where
Yo(rlz,2) =y —2)7". (27)
Then if we consider the symmetry operafyr= expé1b + £b') we obtain
Teo(Alz, 2) = expléar — %éléz)l/fo(?» — &z, 2). (28)
Now it can be verified that the generatorssaf, (2) are
Te — T, T_¢—T_
I, = 3 _nl J = 3 _117
q9—4 q9—4
¢* =Te,, whereg = exp(3€ x 1) (29)

and the ground-state wavefunctions are a representation of this algebra

Jipo(rlz, 2) = [1/2 — A /&l g o (h — &1lz, 2)

J-Yo(Mz,2) = [1/2+ /&) Yo(r + &1lz, 2)

g Yo(rlz, 2) = g7/ Yo(hlz, 2) (30)
where the quantum symbat]], is defined by

. = M 31

W= = (31)
In this way we have shown the quantum group symmetrypiaf on the Poinca upper
half plane. Note that we only considered single-particle wavefunctions. The case of an
interacting system with Laughlin wavefunctions will be studied elsewhere.
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